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Motivation

« Targeting observation: where to put additional observations
during a field experiment?

* Find the sensitivity of forecast errors with respect to the initial
condition using adjoint or ensemble methods

« Make additional observations at the sensitivity regions

« Find the observation impact (after the fact) on the reduction of
forecast errors using adjoint or ensemble methods

« Assessing the impact of current and/or future sensors: what
IS the benefit to assimilate the current and/or future
sensors?

« Conduct OSE (Observing System Experiment)

e Conduct OSSE (Observing System Simulation Experiment)
 Propose yet another concept to address similar issues

» Define observability

* Find the optimal observation configuration that provides the
maximum observability for a given dynamic system
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A turtle on a table

Observability: practical well-posedness of inverse problems.

Camera Position |
strongly observable

i A turtle on a table

Camera Position Il
weakly observable

At camera position |, the turtle is strongly observable.
At camera position |, the turtle is weakly observable.
At camera position lll, the turtle is unobservable.

Sensor configuration may have significant impact on the
effectiveness and efficiency of the observations
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Observablility trom wiipedia W

Observability, in control theory, Is a
measure for how well internal states of a
system can be inferred by knowledge of
Its external outputs. The observability
and controllability of a system are
mathematical duals. The concept of
observability was introduced by
American-Hungarian scientist Rudolf E.
Kalman for linear dynamic systems.

Observability related study in atmospheric sciences:
Cohn and Dee (1988), Menard (1994), Daley (1995)
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Observability

x(n) = M(n —1,x(n — 1))

y(n) = H(x(n), 1)
J(xg, 6%, )= 8x,"Wéx,

+Z,1¥=1||y(n, A xy+6xy) —y(n, 4 xp)lly

where x Is a state vector (internal state) in model
space, vy (external output) is observation vector in
observation space, 4 Is the sensor configuration (e.g.
the sensor locations), W is a weight matrix, ||-[|y is a
norm for the observation operator. Cost function J is
the square of the distance between two Iinitial states,
x, and x, + 6x,, and the two sets of observations
associated with the corresponding initial states.




Observability ...

Definition. Let p > 0 be a positive number. Then the
number € is defined as follows
,
e’ = min J (g, 60, A) (1)
subject to ||6x,||=p, 6x, € S

where S is a reduced space for estimation

The scalar € represents the smallest variation (or
distance) of y corresponding to the variation 6x, in x,. A
small e implies that x, is less observable.

The ratio p/e is a measure of observability. It is called an
unobservability index. A small value of p/e implies
strong observabillity.




Applications
of
Observability



Observability of A Sensor

 Assessing sensor impact

« We can in principle indirectly assess the
Impact of a given sensor, current or future
one through the calculation of the
unobservability index, p/e, with respect to
the variations of the initial condition.

* Required major components
* Dynamic model - M (e.g. NWP model)
e Observation operator - H
« Formulation of the cost function
« A minimization algorithm (not easy)



Optimal Sensor Placement

The concept of observability provides a quantitative
measure of the quality of sensor information.

The best sensor configuration (such as sensor
locations /1) are those that maximize the value of ¢, as
defined in (1), following performance measure, i.e.

max €(/1) (2)

6x0
subjectto4,,, <A <A,

Eq (1) represents a minimization problem and eq (2)
represents a maximization problem. While both
problems are numerically challenging to solve, it is
especially true for the problem represented by eq (2).
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An Example
using
Burgers’ Equation



Objectives of the Example

* lllustrate all components/procedures needed

* Dynamic model, observation operator, cost
function, minimization and maximization
algorithms

« Optimal sensor locations

e Demonstrate its usefulness in data
assimilation

« 4D-Var data assimilation experiments

* Results obtained from both equally spaced
sensors and optimal sensor placement using
Monte Carlo experiments

* Robustness analysis



Burgers’ Equations

Consider a system

2 U(0,t) =0
oU(x,t) +U(ac?t)8U($’t) _%5 Ulx,t) 0 (0,1)
ot U(2r,t) =0

Ox 022 ’
i—1,2,-- N,
§=0,1,2,---, N,

A; — sensor location , N, — number of sensors |,

yi(ty) = Ui, 45),

time interval/N, — sensor sampling rate

Problem:

» where to place 7 “weather stations” (in
X-direction) that is measured at each
model time step?

* Dimension of the model is 50 (in x-
direction).




Numerical Solution

Discretized Model at uniformly spaced nodes: w;(t) — U(x;, 1)

-

"'/ _____________ -
(o e TR
—aX—e X— X -
X % M ¥
in(t) = (2 I el =2
x
)~ O W0) | ()+ial) - 2
: N ’ 2Ax Ax?
- fa(t) — Ny_2(t) fo(t) +un_o(t) — 2un_1(t)
Un-aft) = —una 2Ax e Az?
Output and its metric
Ny
g(t) —y(t)|| = Z |linterp(w(tr;uo), \) — interp(w(ty; wo + dug), A)|[*
k=0

Simple standard numerical techniques are used here
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Parameters used

6
W = {ap + Zak cos(ka) + By sin(ka)}

k=1
k= 0.14
L =27
N =50
T=5

N, = 20, At = T/N,
232 —2)%, <2
0, x> 2

[1(0)=0,f(t) =0
p=0.01

UQ(.CE) =

(Space for estimation)

(length of x-interval)
(dimension of the model)
(final time)

(time step size of sensors)

(nominal initial condition)

(boundary condition)

(radius of the variation of )

=L

W
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Sensor Locations

Sensor locations:

2 2 2
equally spaced: [Al Ay o A7 } - [ g 2% 7%]

optimal locations: [0.75 1.06 1.77 2.08 398 4.83 5.43}

X-direction

Equally spaced | Optimal location
p/e 12.92 1.75

Optimal sensor locations provide strong observability (small p/e )!
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4D-Var Data Assimilation

 To examine the usefulness of the
proposed observability in data
assimilation, two sets of 4D-Var data

Dynamical System
N Mn (an)

Yn = Hay, assimilation experiments are carried out.
o « The only differences between the two

Estimation sets of 4D-Var experiments are the

xl =2l +g,, 0<n< N sensor configurations.

gn = PoH" 2, » One configuration is equally spaces

(HPPHT 4 R)z, = (y, — Hab) sensors, while the other is optimally

placed sensors
Computation « Typical 4D-Var data assimilation setup
Jo=M o + H 2y, [y =0 for a simple problem.

Int+1 = Mpgn, go= P(Lz))fO
M,q,., Mgfn are computed using linear tangent model and
conjugate model
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Monte Carlo Experiments

Background
{ub ()|l —1,2,--- 200} « Two hundred sets of
background are
Sensor data g(;nerated. J f
i ] » They are used to perform
t t e t
sto) - yi(t) yi(tw.) two hundred correspond-
yato)  wo(t) - walln,) ing 4D-Var data
assimilation for both
sensor configurations,
L un(fo) w2lta) ey (I | respectively.

y(t;) =y () + Ry
v; € IR™v are standard independent white Gaussian noise
R = 0.001

Root-mean-square Error
The error of u®(-) — w!™*"(.): 0.3638 or 11.14%
The error of u®(0) — u™*t"(0): 0.3524 or 15.13%



Results ‘@3\\79“

. K a _qtruth 2
The overall error of the analysis (RMSE) u%(t) = \/Zk=1”“ (OO 500

K
Observability | RSME of 4*(0) | RSME of «“(-)
p/e

Equally spaced 12.92 0.1652 0.0790
Sensors

Optimal sensor 1.75 0.0788 0.0326
location

Improvement 86% 52% 58%

Sensor data with higher observability (smaller p/e ) results in higher estimation
accuracy. It implies that sensor data with higher observability (smaller p/e )
contains more valuable information than those with low observability.




RMSE of Trajectory

0.07 . .
0.06 1
K
Callur(© —wmen @
0.05 K 1
0.04 - i
ugJ from equally spaced sensors
= 0.03+ 1
0.02 ¥ from optimal sensors I
0.01 F i
O | | 1 |
0 1 2 3 4 5

time

Maximizing observability results in an overall improvement of the estimation accuracy.




Summary of the analysis:

Robustness Analysis

Variation | Variation | RSME | Improvement
of P} of B | ofu®(.)
Equally spaced 10% 0 0.0938
Optimal locations 10% 0 0.0351 62%
Equally spaced 50% 0 0.1191
Optimal locations 50% 0 0.0887 25%
Equally spaced 0 100% 0.0646
Optimal locations 0 100% 0.0407 37%

v

In all cases, the optimal sensor locations result in significantly improved estimation

accuracy, which ranges from 25% to 62%




Robustness Analysis...

Uniform distribution:
Background error is bounded by [—0.17,0.17]
Sensor error is bounded by [—0.003,0.003]

Summary:
Observability | RSME of »*(0) | RSME of u?(-)
p/e

Equally spaced 12.92 0.1376 0.0645
Sensors

Optimal sensor 1.75 0.0893 0.0372
location

Improvement 86% 35% 42%

The results are consistent with the ones with normally distributed errors in both
background and sensor noises.




=L

Concluding Remarks Vv
° Is defined as the theoretical foundation and cost

function for the optimal design of sensor locations.

e Observability is computed using
method.

e Forthe Burgers equation, optimal sensor locations lead to
significantly improved estimation in 4D-Var data
assimilations.

¢ The optimal sensor locations are

e Many are raised for long term research, including
optimal trajectory planning subject to complicated constraints;
developing computational algorithms for the observability of
large scale systems; Optimal sensor configurations in a more
general sense.



Thank you



Observability

System:
i = f(t,a,p), —system
y — y(l,x, ), —system output

Definition

Given atrajectory (a(t), 1), t € [Lo,t1] and p > 0. The observability
of (2(0), ) is measured by the ratio p/¢, where

€ = min ||y(ta§3(t)?ﬂ) —y(taﬂf(t)ali)HY

(52(0),0p)
subject to
[1(62(0), 0)|| = p
x = ft, 2, f), #(0) = 2(0)+02(0), ik = p+ op

Kang and Xu



Observability...

e V. space of estimation in which an estimate of the state with
adequate accuracy exists. The estimate is updated at each
time step using vectors in W.

e ¢ measures the sensitivity of y relative to the variation of
(2(0), ). A small value of p/e implies strong observability of

((0), ).

e For linear systems, ¢2/p? equals the smallest eigenvalue of
observability gramian

¢ The definition is applicable with general metrics,

Alzes |- Moo

Kang and Xu
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Empirical Covariance Matrix Method W

Empirical Covariance Matrix Method - A computational algorithm

Suppose the metrics of y and vy = u(x,0) are defined by inner
products

ylly = vV<wy,y >v, |luollw =+ <uo,ug >w

Let {vy,v0,--- ,v,, } be a basis of W. Define

A;(t) = 1 (y(t,uo + pvi) — y(t, uo — pvi))

2p
Gy = (< A?;?Aj >Y)2;_1, Gw — (< Vi, Uj >W)z;-_1
Then
1
27 .2 .
P /6 - A'm,?,'n,

where A,,;., 1S the smallest eigenvalue of Gy relative to Gy
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Projection Gradient Method WV

Definition
Let A be the coordinates of the sensors. Then ¢ is a function of A,
¢(A). The optimal sensor locations are defined by

max €(A)

subject to
)\min S A S )\ma,w

Computation - projection gradient method

Let V) = g—i The search direction is defined by

4

0, if A, = Amin?i and V)\?z‘ < 0
Vaii=<% 0,  if\ = Anaws and Vy; > 0

L Vi otherwise

Armijo algorithm model is applied in the direction V.



RMSE of Trajectory

0.07
0.06
K
kzl”uak(t) — utruth(t)llz
K
0.05 1
0.04 1
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Maximizing observability results in an overall improvement of the estimation accuracy.




